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A Lack of Variables Can Bias Machine 
Learning 

• The Problem 
• Payment levels were correlated with health outcomes 
• White patients paid more through insurance 
• The resulting machine learning model inferred that Whites needed more care than Blacks 

• The Teachable Moment 
• One should check for correlations that obscure causality (the model should have included 

insurance status) 3 



The “Fairness” Problem 
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The “Fairness” Problem 
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The “Fairness” Problem 
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Algorithm 
Performance 

This is unfair! 



Many Software Tools Test for Fairness 
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Example 
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Ethics Must be Embedded from the 
Outset 
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https://www.forbes.com/sites/glenngow/2021/07/11/google-facebook-and-microsoft-are-working-on-ai-ethics-heres-what-your-company-should-be-doing/ 
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https://www.forbes.com/sites/glenngow/2021/07/11/google-facebook-and-microsoft-are-working-on-ai-ethics-heres-what-your-company-should-be-doing/


Ethics can help concretize the goals of AI/ML and 
to notify us to the pitfalls along the way 
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Image from AI for Social Good Workshop NeurIPS2018 
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Simply Because Data Exists, Doesn’t 
Mean You Can Use it for Anything 

• https://journalofethics.ama-assn.org/article/genetic-research-among-havasupai-
cautionary-tale/2011-02 

• The Problem 
• Data was collected by University of Arizona 

from the Havasupai tribe with consent for a 
certain purpose 

• The data was “reused” by university 
researchers for other purposes beyond the 
scope of consent 

• The Teachable Moment 
• Data are about individuals, communities, and 

cultures.  Data should not be used in a 
manner that disrespect expectations 
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https://journalofethics.ama-assn.org/article/genetic-research-among-havasupai-cautionary-tale/2011-02
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Only Use Models in Context 

• https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2781313

• The Problem

• The Epic EHR system developer trained a machine
learning model to predict sepsis using a certain
population’s data

• When the model was reused with a new
population, the performance was substantially
worse than the original results suggested

• The Teachable Moment

• Models should not be used out of context.  Know
your populations!

https://www.statnews.com/2022/10/24/epic-overhaul-of-a-flawed-algorithm/ 
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https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2781313
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Infrastructure is Needed to Support 
Everything 
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Research Ready Environments Can Be 
Created 
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https://databrowser.researchallofus.org/ 

https://databrowser.researchallofus.org/


https://databrowser.researchallofus.org/ehr/conditions 
 

https://databrowser.researchallofus.org/ehr/conditions


https://www.researchallofus.org/data-tools/workbench/ 

https://www.researchallofus.org/data-tools/workbench/


Tiered Levels of Access in 
• Public 

• Can be accessed without logging in 
• Summary statistics only 

 

• Sandbox Environments  
 
 
 

• Registered 
• Available to anyone within a trusted organization… plans to expand out to citizen 

scientists 
• Individual-level data with low risk of re-identification 

 

• Controlled – released earlier this year (with 100k human genomes)! 
• Available to researchers in a trusted organizations 
• More detail, more risk, but still designated as non-human subjects 
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Engaging a Diverse Researcher 
Community  

Dr. Watson, Dr. Kitani 
Lemieux, and Jaelyn 
Stepter at Xavier 
University of Louisiana.  
 
Jaelyn was the first place 
winner of this year’s 
Minority Student 
Research Symposium. 

How All of Us Engages with Diverse Researcher 
Communities:  

 
• Creating a pipeline for students: The All of Us 

Minority Student Research Symposium (MSRS) 
 

• Partnerships with HBCUs through CPGI Network: 
Xavier University of Louisiana 
 

• Partnership with Baylor College of Medicine: All of 
Us Evenings with Genetics Research Program series 
with Dr. Debra Dianne Murray 

23 



• ~20 research pilots beginning at institutions around the 
country at various HBCUs and MSIs 

• Addressing ethics and equity at various stages in the lifecycle 

• ~20 research fellows 

• ~20 leadership fellows 
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https://aim-ahead.net/ 

https://aim-ahead.net/


Learning About How We Learn 

• Embedding ethnographers with researchers and research teams to  
• Gain intuition into how they collect data 

 
• Work with IRBs and administrative leadership to get projects up and running 

 
• Access data and infrastructure to perform machine learning 

 
• Determine needs and gaps for conducting meaningful AI development and 

implementation 
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The R’s at the Heart of Data for AI 
• All about teams and experimental environments 

 

• Repeatability: Same Team, Same Experimental Setup 
• You can achieve the same result with the same data 

 

• Replicability: Different Team, Same Experimental Setup 
• Someone else can achieve the same result with the same data 

 

• Reproducibility: Different Team, Different Experimental Setup 
• Someone else can achieve the same result with different data 
• Generalizable knowledge 

26 



Replicability – Data Sharing 
• Journals have pushed for data sharing 
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Replicability – Data Sharing 

• Various repositories for data sharing have been established 
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Replicability – Data Sharing 
• Various policies for data sharing have been established as well 
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Replicability – Data Sharing 

• Journals have pushed for data sharing… but

30 



Replicability – Data Sharing Pushback 

• Numerous arguments, but most common invoked is privacy 
 

• A problem that persists in human subjects research and data derived 
from the clinical domain (e.g., clinical trials or electronic health 
records) 
 

• Numerous approaches to de-identification have been developed, but 
ensuring they are applied in practice has been a challenge 
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De-identification is Potentially Problematic 

• Typically applied to hide (or amend) features that can be leveraged to 
identify an individual 
 

• But the smaller the subpopulation, the more likely that a record will 
have information (e.g., geographic area, race, sexual orientation) 
amended in some way 
 

• This can have major implications on bias and replicability 
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Self-Disclosure is a Big Problem 

• De-identification often assumes that patients do not disclose their
participation… but this is definitely not the case*

• And, disclosure can be made by the research program as well!

• This means that research programs must ask what their obligations
are when offering privacy problem**

33 

*Liu, et al. Biomedical research cohort membership disclosure on social media. AMIA. 2019.
**McKibbin, Malin, Clayton. Protecting research data of publicly revealing participants. Journal of Law and Biosciences. 2021.



Synthetic Data to the Rescue? 

• Algorithmic bias often happens when there’s insufficient data on one 
population 
 

• Can we “make” records for them? 

34 



Ways to Generate Synthetic Data: 
Perturbation 
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Ways to Generate Synthetic Data: 
Simulation 
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This is Not a New Principle 

42 
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This is Not a New Principle 
(Choi et al MLHC 2017) 

Re
al

 

Synthetic 

• Sutter Health & MIMIC

• Demographics, Diagnoses,
Procedures, & Meds

• Prediction of presence /
absence clinical concept

44 



Evolution 

• Better training (Wasserstein distance) and evaluation methods (latent dimensions) (Zhang et al 
JAMIA 2020)

• Enabling constraints (e.g., preventing women from having prostate cancer)
(Yan et al AMIA 2020)

• Move from static to longitudinal data: think LSTMs + GANs (Zhang et al JAMIA 2021)

Zhang, Yan, Mesa, Sun, & Malin. Ensuring electronic medical record simulation through better training, modeling, and evaluation. JAMIA. 2020; 27: 99-108. 
Yan, Zhang, Nyemba, & Malin. Generating electronic health records with multiple data types and constraints. Proc AMIA Symp. 2020: 1335-1344. 
Zhang, Yan, Lasko, Sun, & Malin. SynTEG: A framework for temporal structured electronic health data simulation. JAMIA. 2021; 28: 596-604. 45 



Case Study for Demos & 
Tutorial 

May 2020 May 2021 

1 year after Launch Researcher Workbench 
launched 

> 30 researcher outreach and training events 

> 2000 users 

46 



Building a Synthetic Resource 

Data selection 

Model training  

Data generation 

Post-hoc curation 

235,000 participants w/ 
demographics, physical measures, survey responses  

Train multiple GAN models  
to determine the best converge point and control repetition 

Based on specific 
requirements (e.g., volume, 

constraints)  

Reinsert important outliers that are discarded by 
the data generation model, e.g. Wolfram syndrome 

47 

Two datasets to be made public later this year 



Real vs Synthetic in the Same 
Tutorial 
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What Could Go Wrong? 



 

FAKE Real 

https://arxiv.org/abs/2107.06304 
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https://arxiv.org/abs/2107.06304


When ML Goes “Boink” 
• Mimic 

• Insufficient training data can lead to “mimicking” of original records 

 

• Membership Inference* 
• User can test if features of someone they know appear to be in the training data 

• Requires knowing the features in question 

 

• Attribute Inference 
• User can predict features (they don’t know) about someone based on features they do know 

 

• Combining Membership and Attribute is where disclosure occurs 

51 *Zhang, Yan, Malin. Membership inference attacks against synthetic health data. Journal of Biomedical Informatics. 2022 



Most Importantly 

• We must ensure that there is clinical face value in the data. 
 

• This takes much more time than evaluating the statistical viability 
 

• AI is getting better, but much of medicine still requires human 
intuition 

  (it’s an “open world” problem) 

52 



Some Parting Thoughts 

• The problems we face are enormously complex and  likely beyond our 
current recognition 
 

• Our current ethics quandaries will take a long time to address 
 

• Ethics should not be addressed after AI is created 
 

• Engage. Educate. Evaluate. 
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Questions? Comments? Discussion? 

b.malin@vumc.org 
 

Center for Genetic Privacy and Identity in Community Settings 
https://www.vumc.org/getprecise 

 
Bridge2AI Ethics and Trustworthy AI Core 

https://bridge2ai.org/ethics-core/ 

 
AIM-AHEAD Applied AI Ethics Team 

https://aim-ahead.net/ 
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Membership Intrusion 

Zhang, Yan, Malin. Journal of Biomedical Informatics. 2022. 56 



An Attack on VUMC Data 
• 45,000 patients, diagnosis and procedure codes
• Up to 200 visits
• Adversary has 10% “prior” knowledge
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